
Mathematical Social Sciences 71 (2014) 46–52
Contents lists available at ScienceDirect

Mathematical Social Sciences

journal homepage: www.elsevier.com/locate/econbase

Optimality of linearity with collusion and renegotiation✩

Mehmet Barlo a,1, Ayça Özdog̃an b,∗

a FASS, Sabancı University, Tuzla, Istanbul, 34956, Turkey
b TOBB University of Economics and Technology, Department of Economics, Söǧütözü Cad. No:43, Söǧütözü, Ankara, 06560, Turkey

h i g h l i g h t s
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a b s t r a c t

This study analyzes a continuous-timeN-agent Brownianmoral hazardmodelwith constant absolute risk
aversion (CARA) utilities, inwhich agents’ actions jointly determine themean and variance of the outcome
process. In order to give a theoretical justification for the use of linear contracts, as in Holmstrom and
Milgrom (1987), we consider a variant of its generalization given by Sung (1995), into which collusion
and renegotiation possibilities among agents are incorporated. In this model, we prove that there exists a
linear and stationary optimal compensation schemewhich is also immune to collusion and renegotiation.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

We analyze contracting between a principal and a team of
agents, where the outcome process is governed by a Brownian
motion. Agents have CARA utilities and jointly determine the drift
and diffusion rates. Each of them can observe the others’ behavior
and exploit any collusion and renegotiation opportunities at every
instant via enforceable side-contracts contingent on effort levels
and realized outcomes. We establish a theoretical justification
for the use of linear contracts by proving that there are optimal
stationary and linear sharing rules that are immune to collusion
and renegotiation.2 Thus, it is as if the agents were to choose the

✩ Earlier versions of this paper were titled ‘‘Optimality of linear contracts in
continuous-time principal—multi agent problems with collusion’’. We thank Kim
Sau Chung, Alpay Filiztekin, Ioanna Grypari, Özgür Kıbrıs, Gina Pieters, Can Ürgün
and Jan Werner for helpful comments. All remaining errors are ours.
∗ Corresponding author. Tel.: +90 312 292 4543.

E-mail addresses: barlo@sabanciuniv.edu (M. Barlo), aycaozdog@gmail.com,
aozdogan@etu.edu.tr (A. Özdog̃an).
1 Tel.: +90 216 483 9284.
2 Contacts generally have simpler forms (such as linear) compared to the ones

predicted by the theory. As far as empirical evidence is concerned, Lafontaine (1992)

http://dx.doi.org/10.1016/j.mathsocsci.2014.04.004
0165-4896/© 2014 Elsevier B.V. All rights reserved.
mean and variance only once and the principal were restricted to
employ stationary and linear sharing rules.

Agents’ ability to observe and verify others’ actions and their
knowledge of how each one of them affects the mean and variance
as well as how these contribute to their costs bring about collusion
and renegotiation concerns.3 These, in turn, imply that agents’
agreements have to be efficient. Alternatively, they have to solve

reports that ‘‘franchise contracts generally involve the payment, from the franchisee
to the franchisor, of a lump-sum franchise fee as well as a proportion of sales in
royalties, with the latter usually constant over all sales levels’’. And, Slade (1996)
notes that only linear contracts are used by the oil companies engaged in franchising
in retail-gasoline markets in Vancouver.
3 This formulation is plausiblewhen agents are better informed than the principal

about the managerial details and interim outcomes of the project. This can occur
when the principal does not have the necessary technical training (e.g., lacking the
expertise to operate a nuclear power plant) to dealwith the associated detailswhich
agents (well trained in nuclear physics and details about how to operate that power
plant) are supposed to be fluent with in the first place. Or, when she is far away
(e.g., in another country) from the agents (working in an overseas factory producing
a technical product) and information technologies are not sufficient (possibly due
to language barriers) so that the principal has to base her contract only on the
final output, while agents working together (and speaking the same language) can
observe and verify others’ choices.

http://dx.doi.org/10.1016/j.mathsocsci.2014.04.004
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a utilitarian bargaining in every date and state. The principal
who cannot observe or verify agents’ behavior only knows that
the agents’ bargaining (induced by her own offer) must result
in an efficient outcome. Hence, the optimal contract she offers
(i.e. individually rational sharing rules and control laws, drift
and diffusion rates) must solve in every date and state agents’
bargaining problem for some bargaining weights. Efficiency with
CARA preferences delivers a useful aggregation result which we
employ to establish that the principal can contract with the team
as if she is contracting with a representative agent having CARA
preferences, becauseweprove the following: givenoptimal control
laws for the drift and diffusion rates and an optimal compensation
for the team, agents’ compensations obtained from the efficient
distribution of team’s compensations employing the stationary
bargaining weights that are stated in our main result and the very
same control laws, also solve agents’ bargaining problemwith their
‘‘real’’ date and state specific bargaining weights starting every
date and state. Therefore, the fact that these particular bargaining
weights are not necessarily agents’ real bargaining weights (that
the principal is not necessarily aware of) turns out not to be
important. Due to the fact that, now, the principal is contracting
with a representative agent having CARA preferences, her problem
can be analyzed using techniques in Sung (1995) which enable us
to establish that there is an optimal and stationary linear contract
for the team. As linearity is preserved during the corresponding
efficient redistribution of team’s compensation to agents, ourmain
result is established.4

Holmstrom and Milgrom (1987), the pioneer work displaying
the optimality of linear contracts in a repeated agency setting with
exponential utilities, considers a principal–agent pair where the
agent determines the drift rate of a Brownian motion.5 Schättler
and Sung (1993) extends this setting by considering a larger class of
stochastic processes. The key restriction in both models is that the
agent is not allowed to control the variance of the outcomeprocess.
Sung (1995) extends Holmstrom and Milgrom (1987)’s Brownian
model to the case where the agent can also control the diffusion
rate of the Brownian motion. The resulting problem becomes sim-
ilar to that in Holmstrom and Milgrom (1987) with an additional
time-state independent constraint for which the linearity in out-
come result holds. Koo et al. (2008), on the other hand, presents
a continuous-time agency model under moral hazard with many
agents.6 They show that optimal contracts are also linear in all out-
comes produced separately by each agent. For their linearity result,
the formulation involving the simultaneous-move game played by
agents is important to preserve stationary decision making envi-
ronment. Meanwhile, ourmodel does not feature separate produc-
tion processes and our agents can perfectly observe each other and
can engage in renegotiable side-contracting.

4 We thank an anonymous referee for pointing out that our analysis can be
associated with bonus pools in investment banks. Bonus pools are allocated to
divisions based on their performances. A division manager, who is given much
flexibility, allocates the bonus to the employees. While some criticize nonuniform
bonus allocations among employees on basis of fairness, our paper provides
a justification: the bonus of an employee is determined through a utilitarian
bargaining within the division, hence, depends on his relative bargaining power
and risk preferences. The assumptions needed in this setting are: the employees
cannot communicate with the shareholders; and the division manager knows
the bargaining weights and risk aversion parameters of the employees, but the
shareholders do not.
5 Lack of income effects with exponential utilities and time-state independent

cost functions, imply that the optimal control the agent chooses is time-state
independent. Stationarity of the environment implies that among all possible
compensation schemes, an optimal one is stationary and linear in the final output.
6 Their model is a continuous-time counterpart of Holmstrom (1982) and an

extension of Holmstrom and Milgrom (1987) with N agents. The principal has N
production tasks one for each agent who cannot observe each other.
The paper is organized as follows. While Section 2 contains the
model and the principal’s problem, Section 3 presents the main
result and its proof and Section 4 concludes.

2. Model and preliminaries

The principal andN agents interact over time interval t ∈ [0, 1].
At an instant t , agent i ∈ N ≡ {1, . . . ,N} chooses an effort level
eit ∈ Ei, Ei a compact interval, and these choices are observable
and verifiable by all the other agents, but not the principal. The
probability space is given by (Ω, F , P) where Ω is the space
C = C([0, 1]) of all continuous functions on the interval [0, 1]
with values in ℜ. So a particular event w ∈ Ω is of the form
w : [0, 1] → ℜ. The effort choices e : [0, 1] → ×i∈N Ei, where et =

(eit)i∈N , imply control laws µ and σ which are assumed to be Ft-
predictablemappings,µ : [0, 1]×Ω → U andσ : [0, 1]×Ω → S,
where U is a bounded open subset of ℜ and S is a compact subset
of ℜ++. Controls µ and σ determine the instantaneous drift, µt ,
and the diffusion rates, σt , of a stochastic process, {Xt}t , governed
by a Brownian motion defined by dXt = µtdt + σtdBt . Indeed,
µt ≡ µ(t, X) and σt ≡ σ(t, X).7

The intermediate outcome Xt should be thought of as the
total returns up to period t ∈ [0, 1], and Bt is the standard
Wiener process. The drift and diffusion rates and intermediate
accumulated returns are neither observable nor verifiable by the
principal. However, X1, the level of accumulated returns at the end
of the project, is observable and verifiable by the principal. At the
beginning of the project, the principal and the agents agree upon
a contract, i.e. salary rules S = (Si)i∈N with Si : Ω → ℜ for all
i ∈ N and control laws (µ, σ ) with the restriction that salaries are
payable at the end of the project according to the rules agreed upon
at time 0 which depend only on X1.8

Instantaneous time-state independent cost functions are given
by ci(µt , σt) where ci : U × S → ℜ is twice continuously differ-
entiable, i ∈ N . ci and ciµ (derivative with respect to mean) are
bounded, and both ciµ and ciµµ (second derivative with respect to
mean) are strictly positive. The total costs incurred by agent i ∈ N
is given by

 1
0 ci(µt , σt)dt . In this setting there is an interaction ef-

fect on the two moments of the outcome process and on the costs
of agents. Yet, it also handles the standard environment with two
agents inwhich one agent determines only themean and the other
agent only the variance, and the interaction effect on the costs is
assumed to be minimal.

All have CARA utilities where the coefficients of the principal
and agent i ∈ N are given by R and ri, respectively. The reservation
certainty equivalent agent i ∈ N is given byWi0. We assume that at
each t ∈ [0, 1], agents observe ht

≡ {Xs, µs, σs, (eis)i∈N}s≤t . Agent
i’s expected utility at time t given ((Si)i, µ, σ ) (computed with the
information at time t) is E


− exp


−riW S

i (X; µ, σ)
Ft


where

W S
i (X; µ, σ) =


Si(X) −

 1
0 ci(µs, σs)ds


is his net payoff at the

end of the project.
At any t, ht is observable and verifiable by all the agents but

not the principal, and (Si)i∈N is determined by the principal at

7 We assume σ satisfies a uniform Lipschitz condition: there exists a constant
K such that for Z, Z̄ ∈ C[0, 1], |σ(t, Z) − σ(t, Z̄)| ≤ K sup0≤s≤t |Z(s) − Z̄(s)|.
Even though this condition may be weakened (as was suggested by an anonymous
referee) by noticing that our process is one dimensional and by employing Revuz
and Yor (1999, Theorem 3.5, p. 390; Exercises 3.13–14, p. 397) (while it would still
hold for the optimal contract), we use this Lipschitz condition (so, Revuz and Yor,
1999, Theorem2.1, p. 375) in order to have a parallel presentationwith Sung (1995).
8 This formulation is consistent with our hypothesis of the mean and variance

being unobservable and nonverifiable by the principal. If (Si)i∈N were to depend
on the entire process {Xt }t , implying that {Xt }t is observable and verifiable by the
principal, then she could infer {µt }t and/or {σt }t . For more, see footnotes 7 and 8 of
Sung (1995).
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the beginning of the project. Any communication between the
principal and the agents is not allowed as in Che and Yoo (2001).9
Thus, at any instant a utilitarian bargaining problem among the
agents emerges due to collusion opportunities. Its outcome can
be implemented via state-contingent binding contracts drafted
and agreed upon in date 0, specifying an allocation among the
agents for each possible date and state. As for any given history
agents’ arrangement ensures optimality from that state onwards,
our formulation involves renegotiation.

Collusion implies that the outcome of agents’ bargaining is ex-
ante efficient; so there is no history, state, and any other feasible
contract that every agent (strictly) prefers to the one that was
agreed upon. This brings about optimal risk sharing. Given Ft-
predictable salaries Si : [0, 1] × Ω → ℜ, i ∈ N , agent i’s induced
salary at time t under S ≡ (Si)i∈N is Si(t) : Ω → ℜ, denoting the
salary arrangement (on compensations to be made at the end of
the project) to i under S at t . Below we define the agents’ problem
where the first requirement is a natural feasibility constraint, the
second a balanced budget condition, and the third agent i’s date-t
participation constraint.10

Definition 1 (The Agents’ Problem). Given the principal’s offer,
salaries Si : Ω → ℜ for i ∈ N and Ft-predictable control laws
µ : [0, 1] × Ω → U and σ : [0, 1] × Ω → S and bargaining
weights θ : [0, 1] × Ω → int(∆) (where int(∆) denotes the
interior of the N dimensional simplex), the side-contracting via
control laws S̃i : [0, 1] × Ω → ℜ for i ∈ N, µ̃ : [0, 1] × Ω → U
and σ̃ : [0, 1] × Ω → S solves the agents’ problem at θ if for a.e. t
and ht
i∈N

θitE

− exp


−riW

Ŝ(t)
i (X; µ̂, σ̂ )

Ft


(1)

ismaximizedwhereW Ŝ(t)
i (X; µ̂, σ̂ ) ≡


Ŝi(t)(X)−

 1
0 ci(µ̂s, σ̂s)ds


,

X ∈ Ω , and

dXτ = µ̂τdτ + σ̂τdBτ , τ ≥ t, (2)
N
i=1

Ŝi(t)(X) ≤

N
i=1

Si(X), X ∈ Ω, (3)

E

− exp


−riW

Ŝ(t)
i (X; µ̂, σ̂ )

Ft


≥ E


− exp


−riW S

i (X; µ, σ)
Ft


, i ∈ N. (4)

The principal is aware of the collusion capabilities and bargain-
ing among agents. Hence, she knows that while she is restricted
to offer contracts that solve the agents’ problem starting any date
and state for some bargaining weights, she is not aware of agents’
‘‘real’’ bargaining weights.

Definition 2 (The Principal’s Problem). Principal chooses salary
functions Ŝi : Ω → ℜ for i ∈ N and control laws µ̂ : [0, 1]×Ω →

9 Otherwise by offering additional payoffs the principal can make the agents
report others’ choices and implement the first-best, at least in a one-shot setting.
While the value of this communication is not trivial due to agents’ abilities to punish
‘‘snitches’’ in a repeated setting, not allowing any communication between the
principal and the agents helps us to abstract from these complications. For more
see footnote 13 of Barlo and Özdoğan (2013). Moreover, footnote 2 of the current
paper provides examples when this abstraction is plausible.
10 The date-t participation constraint considers the grand coalition/team, and not
sub-coalitions. This can be justified when one assumes that each player has a right
to veto the outcome of the agents’ bargaining.
U and σ̂ : [0, 1] × Ω → S such that
(Ŝi)i∈N , µ̂, σ̂


∈ argmax

((Si)i∈N ,µ,σ )

× E


− exp


−R


X1 −

N
i=1

Si(X)

F0


subject to
i. Feasibility: dXt = µtdt + σtdBt , t ∈ [0, 1];
ii. Individual Rationality: E


− exp


−riW S

i (X; µ, σ)
F0


≥

− exp{−riWi0}, i ∈ N;
iii. The Agents’ Problem: (Si)i∈N and (µ, σ )must be such that there

exists a profile of control laws Si : [0, 1] × Ω → ℜ satisfying
Si(1)(X) = Si(X), i ∈ N and X ∈ Ω , so that ((Si)i, µ, σ )
solves the agents’ problem at some bargaining weights θ :

[0, 1] × Ω → int(∆) given ((Si)i, µ, σ ).

In Definition 2, feasibility and individual rationality are stan-
dard. Collusion, on the other hand, is handled by requiring that the
principal’s offer solves the agents’ problem.

3. Optimality of linearity

Our main theorem proves that the linearity results of Holm-
strom and Milgrom (1987), Schättler and Sung (1993), and Sung
(1995) are robust with respect to collusion and renegotiation.

Theorem 1. There exists a stationary and linear optimal collusion
proof and renegotiation proof contract.

The rest of the paper concerns the proof of this result which
involves 3 steps. First, we analyze the efficiency implications of
the agents’ problem and obtain some desirable properties. In fact,
we show that the interaction among agents is similar to that in
Bone (1998) and its aggregation result holds in our setting. This
enables us to associate the agents’ problem with one that involves
a ‘‘representative agent’’ (the team of all agents) having a CARA
utility.11,12 In the second step we consider the associated version
of the principal’s problem with a team and establish optimality of
linearity as in Sung (1995). The final step shows that this result is
preserved in the principal’s problem containing the agents’ when
the team’s payments are distributed efficiently.

Definition 3. Given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N is static
efficient at ht if there exists θt ∈ int(∆) such that

(Si(t))i∈N ∈ argmax
Ŝ(t)


i∈N

θitE

− exp


−riW

Ŝ(t)
i (X; µ, σ)

Ft


subject to (1) dXτ = µτdτ + στdBτ for τ ≥ t , and (2)

N
i=1 Ŝi(t)

(X) ≤
N

i=1 Si(t)(X) for X ∈ Ω .

11 In that study a group of agents with CARA utilities jointly choose between
uncertain prospects. A static environment is modeled, while the following two
key aspects are common with our setting: (1) the choice of any prospect must be
unanimously agreed, and (2) the uncertain outcomes from the chosen prospect are
distributed among agents according to some unanimously made prior agreements.
12 An earlier study, Brennan and Kraus (1978), shows that an aggregation leading
to a representative agent representation is possible when agents have either
CARA utilities or HARA (hyperbolic absolute risk aversion) preferences with equal
exponents. And, it is shown in Section 4 in Bone (1998) that this conclusion does
not hold with nonidentical exponents. Moreover, the representative agent’s utility
function is not necessarily negative exponentialwithHARAutilities having identical
exponents. However, as the stationary decisionmaking environment is a key feature
in the search for optimality of linearity, the CARA utilities’ property of not involving
any income effects and the use of stochastic processeswith themartingale property
are essential: the history in our setting determines the accumulated returns which
do not influence agents’ decisions due to lack of income effects; and, incremental
future returns is expected not to be different from today’s due to the martingale
property.
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Lemma 1. Given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N is static
efficient at ht if and only if there is (θit)i∈N ∈ int(∆) such that for
a.e. X ∈ Ω and for any i, j ∈ N

θit ri exp

−riW

S(t)
i (X; µ, σ)


= θjt rj exp


−rjW

S(t)
j (X; µ, σ)


. (5)

Proof. Let t and ht and (µτ , στ )τ∈[0,1] be given. We denote the
resulting probability density function on X by f (·; µ, σ | Ft).13Due
to the strict concavity of the utility functions, the necessary
conditions of the first-order analysis are also sufficient. Hence,
(Si(t))i∈N is static efficient at ht if and only if for every i ∈ N

θit ri exp

−riW

S(t)
i (X; µ, σ)


f (X; µ, σ | Ft) = λX ,

for a.e. X ∈ Ω (6)

where λX denotes the Lagrangian multiplier of the feasibility for
the redistribution in state X and it has to be strictly positive as
the constraint binds due to the objective function being strictly
increasing. Note that f (X; µ, σ | Ft) > 0, X ∈ Ω , and (6)
is analogous to condition 4 of Bone (1998). Since the right-hand
side of (6) does not depend on the identity of the agent, the result
follows. �

By following the same arithmetic manipulations of Bone (1998)
(conditions 9–13), we obtain:

Lemma 2. Given t and ht and (µτ , στ )τ∈[0,1], (Si(t))i∈N is static
efficient at ht if and only if there is (θit)i∈N ∈ int(∆) such that for
all i ∈ N and a.e. X ∈ Ω ,

W S(t)
i (X; µ, σ) = kit +

rc
ri
W̄ S(t)(X; µ, σ) (7)

where rc = (


j 1/rj)
−1 and kit = (rc/ri)(


j(ln(θit ri) − ln(θjt rj))/

rj) and W̄ S(t)(X; µ, σ) =


i W
S(t)
i (X; µ, σ).

Proof. The rearrangement of Eq. (5) in logarithmic form is as
follows: for a.e. X ∈ Ω and every i, j ∈ N , there exist {θit , θjt} at
time t such that,

W S(t)
j (X; µ, σ) =

ri
rj
W S(t)

i (X; µ, σ) +
ln(θjt rj) − ln(θit ri)

rj
.

Summing across j while keeping i fixed results in

W̄ S(t)(X; µ, σ) =


j

W S(t)
j (X; µ, σ)

=


j


ri
rj
W S(t)

i (X; µ, σ) +
ln(θjt rj) − ln(θit ri)

rj


= riW

S(t)
i (X; µ, σ)


j

1
rj

+


j

ln(θjt rj) − ln(θit ri)
rj

=
ri
rc
W S(t)

i (X; µ, σ) −
ri
rc
kit

where rc and kit are as defined in the statement of the lemma.
Hence, the result follows. �

So given the history and control laws, static efficiency at that
history implies that agent i’s payment in instant t from the total
payments (the team’s state-contingent compensation) involves
a (state-independent) constant payment, and a fraction which
depends on agents’ CARA coefficients and not the bargaining
weights. Moreover, summing across agents these fractions add up

13 It is useful to remind the reader that for any standard Brownian motionX =

{Xt : t ∈ [0, ∞)}, Xt has a probability density function ft given by ft (x) =

1/(
√
2π t) exp{−x2/(2t)}.
to unity while the fixed payments sum to zero. This leads to the
following:

Lemma 3. Suppose that for given t and ht and (µτ , στ )τ∈[0,1],
(Si(t))i∈N is static efficient at ht and let θt ∈ int(∆), identifying (kit)i
∈ ℜ

N according to Lemma 2, be associated with (Si(t))i. Let Q(t) :

Ω → ℜ be given and W̄Q(t)(X; µ, σ) ≡


Q(t)(X) −


i

 1
0 ci(µs,

σs)ds


, X ∈ Ω . Then (S̃i(t))i∈N , a feasible redistribution of Q(t)
according to θt (thus, (kit)i) defined by

W S̃(t)
i (X; µ, σ) = kit +

rc
ri
W̄Q(t)(X; µ, σ),

for a.e. X ∈ Ω , is also static efficient at ht .

Proof. Let t and ht and (µτ , στ )τ∈[0,1] be given, and (Si(t))i∈N along
with θt and (kit)i be as in the statement of the lemma. Hence, due
to Lemmas 1 and 2 the profile (Si(t))i∈N is static efficient at ht is
equivalent to for a.e. X ∈ Ω

θit ri exp

−ri


kit +

rc
ri
W̄ S(t)(X; µ, σ)


= θjt rj exp


−rj


kjt +

rc
rj
W̄ S(t)(X; µ, σ)


,

which simplifies to, θit ri exp {−rikit} = θjt rj exp

−rjkjt


. To see

that (S̃i(t))i∈N is static efficient at ht we prove that this profile
satisfies (5). This follows from the last equation and for a.e. X ∈ Ω

we have W̄ S̃(t)(X; µ, σ) = W̄Q(t)(X; µ, σ) and

θit ri
θjt rj

=
exp


−rjkjt


exp {−rikit}

=

exp

−rj


kjt +

rc
rj
W̄ S̃(t)(X; µ, σ)


exp


−ri


kit +

rc
ri
W̄ S̃(t)(X; µ, σ)

 . �

We employ this lemma to establish that the principal does
need not to know what the ‘‘real’’ bargaining weights θt are.
As the bargaining weights do not affect agents’ shares from the
total compensation when dealing with static efficiency at a given
history, it can be shown that in such situations the interests of all
the agents are perfectly aligned.

Lemma 4. Suppose that for given t and ht and (µτ , στ )τ∈[0,1],
(Si(t))i∈N associated with θt and (kit)i and


S′

i(t)

i∈N are both static

efficient at ht with the additional requirement that

S′

i(t)

i∈N is

defined by

W S′(t)
i (X; µ′, σ ′) = kit +

rc
ri
W̄ S′(t)(X; µ′, σ ′).

Then,

E

− exp


−rjW

S(t)
j (X; µ, σ)

Ft


> E


− exp


−rjW

S′(t)
j (X; µ′, σ ′)

Ft


, for some j ∈ N (8)

if and only if

E

− exp


−rcW̄ S(t)(X; µ, σ)

Ft


> E

− exp


−rcW̄ S′(t)(X; µ′, σ ′)

Ft


. (9)

Proof. Let t and ht and (µτ , στ )τ∈[0,1] be given and (Si(t))i∈N
associated with θt and (kit)i and


S′

i(t)

i∈N be as in the statement

of the lemma. Notice that in light of Lemma 2 (Eq. (7)), inequality
(8) holds for any one of j ∈ N if and only if
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E


− exp

−rj


kjt +

rc
rj
W̄ S(t)(X; µ, σ)

Ft


> E


− exp


−rj


kjt +

rc
rj
W̄ S′(t)(X; µ′, σ ′)

Ft


which equivalent to

exp

−rjkjt


E

− exp


rcW̄ S(t)(X; µ, σ)

Ft


> exp

−rjkjt


E

− exp


rcW̄ S′(t)(X; µ′, σ ′)

Ft


,

delivering the desired conclusion as the last inequality is equiva-
lent to (9). �

Now, we proceed with associating these conclusions with
dynamic notions of efficiency:

Definition 4. Given (µτ , στ )τ∈[0,1], (Si)i∈N with Si : [0, 1] × Ω →

ℜ for i ∈ N is efficient if for a.e. t and ht it must be that (Si(t))i∈N is
static efficient at ht . We say that ((Si)i, µ, σ ) is efficient whenever
(Si)i is efficient for given µ and σ .

Then, under the light of our findings about efficiency and the
fact that agents’ interest are perfectly aligned, we wish to define
the team’s problem:

Definition 5 (The Team’s Problem). Given the principal’s offer,
salaries Si : Ω → ℜ for i ∈ N and Ft-predictable control laws
µ : [0, 1]×Ω → U and σ : [0, 1]×Ω → S, S̃c : [0, 1]×Ω → ℜ

and µ̃ : [0, 1] × Ω → U and σ̃ : [0, 1] × Ω → S solve the team’s
problem if for a.e. t and ht the following is maximized

E

− exp


−rcW Ŝc (t)

c (X; µ̂, σ̂ )
Ft


, (10)

whereW Ŝc (t)
c (X; µ̂, σ̂ ) ≡


Ŝc(t)(X) −


i

 1
0 ci(µ̂s, σ̂s)ds


, X ∈

Ω , subject to

dXτ = µ̂τdτ + σ̂τdBτ , τ ≥ t, (11)

Ŝc(t)(X) ≤


i

Si(X), X ∈ Ω. (12)

E

− exp


−rcW Ŝc (t)

c (X; µ̂, σ̂ )
Ft


≥ E


− exp


−riW S

i (X; µ̂, σ̂ )
Ft


, ∀i ∈ N. (13)

The date-t participation constraint, (13), can be interpreted as
follows: the expected utility of the representative agent (the team)
cannot be strictly lower than the expected utility of any one of the
agents. Otherwise whether or not such an agent would be willing
to participate into the team arrangement is at jeopardy.

For any control laws (ST , µT , σ T ) that solve the team’s problem,
we prove that we can construct a redistribution so that efficiency
in every date and state is obtained and agents’ problem is solved.

Lemma 5. Let the principal’s offer, Si : Ω → ℜ, i ∈ N, and Ft-
predictable µ : [0, 1] × Ω → U and σ : [0, 1] × Ω → S
be given, and suppose that the Ft-predictable profile (STc , µ

T , σ T ),
with STc : [0, 1] × Ω → ℜ and µT

: [0, 1] × Ω → U and
σ T

: [0, 1]×Ω → S, solves the team’s problem. Then ((STi )i, µ
T , σ T )

obtained by distributing the team’s payments with θ∗
: [0, 1]×Ω →

int(∆)where θ∗

it =
rc
ri
for all t and ht is efficient and solves the agents’

problem at θ∗ for given ((Si)i, µ, σ ).

Proof. Let the principal’s offer ((Si)i, µ, σ ) be as in the statement
of the lemma and suppose (STc , µ

T , σ T ) solves the team’s problem.
Define ST = (STi )i using θ∗ as follows: for a.e. t, ht and X

W ST (t)
i (X; µT , σ T ) =

rc
ri
W̄ ST (t)(X; µT , σ T ), (14)
while W̄ ST (t)(X; µT , σ T ) = W STc (t)
c (X; µT , σ T ) for a.e. t and ht

and X .
Next, we prove that ((STi )i, µ

T , σ T ) is efficient: let t and ht be
given and θ∗

i =
rc
ri
. Observe that kTit = (rc/ri)(


j(ln(θ∗

i ri) −

ln(θ∗

j rj))/rj) = 0 for all i, t, ht . So (14), the defining condition
of (STi (t))i, satisfies (7); hence, (STi (t))i is static efficient at ht by
Lemma 2.

(STc , µ
T , σ T ) solving the team’s problem means that for a.e. t

and ht it maximizes (10) subject to (11) and (12) and (13).Wewish
to show that ((STi )i, µ

T , σ T ) satisfies the constraints of the agents’
problem. As


i
rc
ri

= 1, (11) and (12) imply (2) and (3). We display
that (4) also holds: since (STi )i is defined for a.e. t and ht and X by

(14) itmust be that riW
ST (t)
i (X; µT , σ T ) = rcW̄ ST (t)(X; µT , σ T ) and

W̄ ST (t)(X; µT , σ T ) = W STc (t)
c (X; µT , σ T ) for a.e. t and ht and X; this

implies (13) if and only if (4).
In the next step we prove that for any ((SAi )i, µ

A, σ A) that solve
the agents’ problem for θ∗, the associated profile (


i S

A
i , µ

A, σ A)
satisfies (11) and (12) and (13) of the team’s problem. Notice that
((SAi )i, µ

A, σ A) is efficient: since the definition of static efficiency
concerns the maximization of (1) subject to (2) and (3) for a
given t and ht and (µA

τ , σ
A
τ )τ∈[0,1], we conclude that for a.e. t and

ht , ((SAi (t))i, µ
A, σ A) is static efficient atht . So Lemma2applies and

using θ∗ we obtain:

W SA(t)
i (X; µA, σ A) = kAit +

rc
ri
W̄ SA(t)(X; µA, σ A),

where kAit = 0 for all t and ht and i. (15)

(2) and (3) concerning ((SAi )i, µ
A, σ A) imply (11) and (12) involving

(


i S
A
i , µ

A, σ A). And (13) if and only if (4): since (SAi )i is defined

for a.e. t and ht and X by (15), riW
SA(t)
i (X; µA, σ A) = rcW̄ SA(t)(X;

µA, σ A) and W̄ SA(t)(X; µA, σ A) = W S̄A(t)
c (X; µA, σ A) where S̄A(t)

(X) =


i S
A
i (t)(X), i ∈ N .

The preceding two paragraphs establish that (1) the solution to
the team’s problem satisfies the constraints of the agents’ problem
when the distribution is done according to θ∗, and (2) the solution
of the agents’ problem at θ∗ satisfies the constraints of the team’s
problem.

Finally, we establish that if (STc , µ
T , σ T ) solves the team’s prob-

lem, then ((STi )i, µ
T , σ T ) solves the agents’ problemat θ∗. From the

above we know that ((STi )i, µ
T , σ T ) is efficient. So using (14) and

θ∗, the objective function of the agents’ problem (condition (1)) be-
comes

i

θ∗

i E

− exp{−riW

ST (t)
i (X; µ, σ)}

Ft


=


i

rc
ri
E

− exp{−rcW̄ ST (t)(X; µ, σ)}

Ft


= rc


i

1
ri


E

− exp{−rcW

STc (t)
c (X; µ, σ)}

Ft


= E


− exp


−rcW

STc (t)
c (X; µ, σ)

Ft


.

Therefore, the objective functions of the two problems coincide,
delivering the desired conclusion. �

Now, the principal may contract directly with the representa-

tive agent having a CARA coefficient rc =


i
1
ri

−1
and a reserva-

tion certainty equivalentWc0 =


i Wi0 and costs cc : U × S → ℜ

is defined by cc(µt , σt) =


i ci(µt , σt):
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Definition 6. Principal chooses a salary for the team Ŝc : Ω → ℜ

and control laws µ̂ : [0, 1] × Ω → U and σ̂ : [0, 1] × Ω → S,
such that
Ŝc, µ̂, σ̂


∈ argmax

(Sc ,µ,σ )

E [− exp {−R (X1 − Sc(X))}| F0]

subject to

i. dXt = µtdt + σtdBt , t ∈ [0, 1];
ii. E


− exp


−rcW Sc

c (X; µ, σ)
F0


≥ − exp{−rcWc0};

iii. Sc and (µ, σ ) must be such that there exists Sc : [0, 1] × Ω →

ℜ satisfying Sc(1)(X) = Sc(X), X ∈ Ω , so that for a.e. t and
ht , (Sc, µ, σ ) maximizes E


− exp


−rcW

S̃c (t)
c (X; µ̃, σ̃ )

Ft


subject to dXτ = µ̃τdτ + σ̃τdBτ , τ ≥ t , and S̃c(t)(X) ≤ Sc(X),
X ∈ Ω .

The principal’s problem involving the representative agent
given inDefinition 6 belongs to the class studied in Sung (1995) and
his Proposition 2 applies which we restate using our notation.14

Lemma 6 (Proposition 2 of Sung, 1995). Let (m∗, s∗) be a control pair
that solves the following constrained static maximization problem.
Choose (m̂, ŝ) ∈ U × S to maximize

Φp(m̂, ŝ) = m̂ + Rŝ2ccµ(m̂, ŝ) − cc(m̂, ŝ)

−
1
2
(R + rc)


ccµ(m̂, ŝ)

2 ŝ2 −
R
2
ŝ2

subject to (m̂, ŝ) ∈ argmax(m,s)∈U×S Φa(m, s | m̂, ŝ) := ccµ(m̂, ŝ)m
− cc(m, s) −

rc
2 (ccµ(m̂, ŝ))2s2.

Then (m∗, s∗) is the optimal control pair for all t ∈ [0, 1], and the
principal’s optimal remaining expected utility V over time is given by
V (t, Xt) = − exp {−R (Xt − Wc0 + (1 − t)Φp(m∗, s∗))}.

Furthermore, the optimal salary scheme S∗
c is linear in the final

realized outcome X1, and is given by

S∗

c (X1) = Wc0 + cc(m∗, s∗) + ccµ(m∗, s∗)

(X1 − X0) − m∗


+

rc
2


ccµ(m∗, s∗)

2 s∗2. (16)

Proof. See the Appendix of Sung (1995). �

We have to emphasize that ‘‘Φp is representative of the prin-
cipal’s expected utility’’ while ‘‘Φa can be viewed as a representa-
tive of the (representative) agent’s expected utility’’ (Sung, 1995).
Therefore, Lemma 6 tells that the principal’s problem given in Defi-
nition 6 has a (stationary) solution (S∗

c , µ
∗, σ ∗)whereµ∗

: [0, 1]×
Ω → U and σ ∗

: [0, 1] × Ω → S are defined by µ∗
t (X) = m∗ and

σ ∗
t (X) = s∗ for t ∈ [0, 1] and X ∈ Ω , and S∗

c is linear in X1 as it is
given by Eq. (16).

The principal distributing (S∗
c , µ

∗, σ ∗), efficiently using θ∗

attains S∗
= (S∗

i )i defined by

W S∗

i (X; µ∗, σ ∗) = (rc/ri)W
S∗
c

c (X; µ∗, σ ∗). (17)

Let S∗

k : [0, 1] × Ω → ℜ for k = c, 1, . . . ,N be given by
S∗

k(t)(X) = S∗

k (X), t ∈ [0, 1] and X ∈ Ω .

Lemma 7. S∗

i : Ω → ℜ is linear in X1 for all i ∈ N. And (S∗
c , µ

∗, σ ∗)
solves the team’s problem (Definition 5) given ((S∗

i )i, µ
∗, σ ∗);

14 Sung (1995) uses the first-order approach, introduced by Schättler and Sung
(1993), by allowing agents to control the variance aswell as themean of the process.
The first-order necessary conditions lead to a semi-martingale representation of
agent’s salary function which, in turn, is used to obtain a relaxed version of the
principal’s problem.
((S∗

i )i, µ
∗, σ ∗) solves the agents’ problem (Definition 1) given ((S∗

i )i,
µ∗, σ ∗) at θ∗. Finally, ((S∗

i )i, µ
∗, σ ∗) solves the principal’s prob-

lem (Definition 2).

Proof. The linearity of S∗

i follows from the fact that (17) is equiv-
alent to S∗

i (X) being equal to

S∗

i (X) = ci(m∗, s∗) +
rc
ri


j∈N

Wj0 + A1(X1 − X0) + A2


,

where A1 =


j∈N cjµ(m∗, s∗) and A2 =
rc
2 (


j∈N cjµ(m∗, s∗))2s∗2−
(


j∈N cjµ(m∗, s∗))m∗. As ciµ is strictly positive, A1 is strictly posi-
tive.

To establish that (S∗
c , µ

∗, σ ∗) solves the team’s problem given
((S∗

i )i, µ
∗, σ ∗), it suffices to show that (13) is satisfied. This holds

because by definition E[− exp{−rcW
S∗c (t)
c (X; µ∗, σ ∗)}|Ft ] equals

E[− exp{−rcW
S∗
c

c (X; µ∗, σ ∗)}|Ft ] = E[− exp{−riW S∗

i (X; µ∗,
σ ∗)}|Ft ], i ∈ N , due to (17).

Now, Lemma 5 applies, so ((S∗

i )i, µ
∗, σ ∗) solves the agents’

problem given ((S∗

i )i, µ
∗, σ ∗) at θ∗.

To show that ((S∗

i )i, µ
∗, σ ∗) solves the principal’s problem

given in Definition 2 it suffices to prove that this profile satisfies
agents’ individual rationality constraints. This follows from the fact
that E[− exp{−ri(S∗

i −
 1
0 ci(µ∗, σ ∗)dt)}|F0] = E[− exp{−ri(Wi0

+
rc
ri
(A1(X1 − X0) + A2))}|F0], and this equals − exp{−riWi0}

E[− exp{−rc(S∗
c −Wc0−cc(m∗, s∗))}|F0], and the individual ratio-

nality constraint of the representative agent (condition ii in Defi-
nition 6) being satisfied. �

This finishes the proof of Theorem 1.

4. Concluding remarks

Now, we consider the situation when agents’ ‘‘real’’ bargaining
weights are employed. Let θR

: [0, 1]×Ω → int(∆) be the agents’
real bargaining weights that the principal is not aware of. Below
we prove that ((S∗

i )i, µ
∗, σ ∗) also solves the agents’ problem given

((S∗

i )i, µ
∗, σ ∗) at θR.

Suppose not, and consider ((SRi )i, µ
∗, σ ∗) where SRi is defined

by

W SR(t)
i (X; µ∗, σ ∗) = kRit +

rc
ri
W S∗c (t)

c (X; µ∗, σ ∗), (18)

while (kRit)i is associated with (θR
it )i. Due to Lemma 3 we know

that ((SRi )i, µ
∗, σ ∗) is efficient. If ((SRi )i, µ

∗, σ ∗) were not to solve
the agents’ problem given ((S∗

i )i, µ
∗, σ ∗) at θR, then the solution

((SAi )i, µ
A, σ A) must be efficient, thus satisfy (7) with (kRit)i (i.e. is

given by W SA(t)
i (X; µA, σ A) = kRit +

rc
ri
W S∗c (t)

c (X; µA, σ A), i ∈ N),
and that there exist t and ht with

i

θR
itE

− exp


−riW

SA(t)
i (X, µA, σ A)

Ft


>


i

θR
itE

− exp


−riW

SR(t)
i (X, µ∗, σ ∗)

Ft


,

which implies that there is some j ∈ N such that E[− exp{−rjW
SA(t)
j

(X, µA, σ A)}|Ft ] strictly exceeds E[− exp{−rjW
SR(t)
j (X, µ∗, σ ∗)}|

Ft ]. Since both ((SAi )i, µ
A, σ A) and ((SRi )i, µ

∗, σ ∗) are efficient and
defined via the same (kRit)i, Lemma 4 applies and the last inequal-
ity is equivalent to E[− exp{−rcW

S∗c (t)
c (X, µA, σ A)}|Ft ] being strict

greater than E[− exp{−rcW
S∗c (t)
c (X, µ∗, σ ∗)}|Ft ] and this delivers

a contradiction to µ∗ and σ ∗ being optimal controls of Lemma 6.
Having established that ((SRi )i, µ

∗, σ ∗) solves the agents’
problem for given ((S∗

i )i, µ
∗, σ ∗) at θR, we obtain from (18)
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that riW
SR(t)
i (X; µ∗, σ ∗) = rikRit + rcW

S∗c (t)
c (X; µ∗, σ ∗), and use

the observation that made in (14) to have rcW
S∗c (t)
c (X; µ∗, σ ∗) =

riW
S∗(t)
i (X; µ∗, σ ∗) delivering

kRit = W SR(t)
i (X; µ∗, σ ∗) − W S∗(t)

i (X; µ∗, σ ∗).

Due to W S∗(t)
i (X; µ∗, σ ∗) = W S∗

i (X; µ∗, σ ∗), i’s date-t participa-
tion constraint (4), becomes

0 ≤ E

− exp


−riW

SR(t)
i (X; µ∗, σ ∗)

Ft


+ E


exp


−riW S∗

i (X; µ∗, σ ∗)
Ft


=

E

− exp


−riW

SR(t)
i (X; µ∗, σ ∗)

Ft


E

exp


−riW S∗

i (X; µ∗, σ ∗)
Ft


+

E

exp


−riW S∗

i (X; µ∗, σ ∗)
Ft


E

exp


−riW S∗

i (X; µ∗, σ ∗)
Ft


= E


− exp


−ri


W SR(t)

i (X; µ∗, σ ∗)

− W S∗

i (X; µ∗, σ ∗)
Ft


+ 1

= − exp

−rikRit


+ 1,
which implies exp

rikRit


≥ 1, so kRit ≥ 0, for all i ∈ N . Moreover,

by efficiency


i k
R
it = 0. Hence, kRit = 0 for all i and t and ht , thus,

((SRi )i, µ
∗, σ ∗) = ((S∗

i )i, µ
∗, σ ∗); a contradiction.
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